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SUMMARY

This paper numerically investigates the influence of Hall current on the steady flows of an Oldroyd
6-constant fluid between concentric cylinders. The flow analysis has been performed by employing finite
element method. Two flow problems are considered. These problems have been recently solved by Rana
et al. (Chaos, Solitons and Fractals, in press). Here the main equation governing the flow problems in
(Chaos, Solitons and Fractals, in press) is corrected first and then used in the simulation. Finally, the
interesting observations are obtained by plotting graphs. Copyright q 2008 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The non-Newtonian fluids are now acknowledged more appropriate in industrial and techno-
logical applications. In view of their importance, several authors [1–19] have recently studied
non-Newtonian fluids in various situations. Very recently, Rana et al. [20] analyzed the magne-
tohydrodynamic (MHD) flows of an Oldroyd 6-constant fluid between two concentric cylinders.
In fact, the conclusion that m→∞ gives the result of the hydrodynamic case is not correct. This
happens due to a mistake in Equations (9), (12), (21), and (23) of Reference [20]. They discussed
the Poiseuille and generalized Couette flows using finite difference scheme.

In the present paper, we first correct the equations and then reconsider the Poiseuille and
generalized Couette flows. The finite element method is used in finding the numerical solution.
The main points of the present analysis are included in the conclusions.
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2. PROBLEMS STATEMENT

We consider an incompressible and MHD Oldroyd 6-constant fluid between two coaxial cylinders
of radii R0 and R1. The induced magnetic field is negligible and the Hall currents are considered.
In order to avoid repetition, only the correct forms of Equations (9), (12), (21), and (23) are
presented as follows:
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Note that the above equation is in dimensionless form. Here J is the current density, B is the
total magnetic field, B0 is an applied magnetic field, � is the electrical conductivity, m is the Hall
parameter, p is the pressure, �i (i=1,2) are material constants, u is the z-component of velocity
V, � is the dynamic viscosity and
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3. IMPLEMENTATION OF FINITE ELEMENT METHOD

Equation (4) in associated variable form can be written as

∫
�

�

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎣
1+(3�1−�2)

(
du

dr

)2

+�1�2

(
du

dr

)4

(
1+�2

(
du

dr

)2
)2

⎤
⎥⎥⎥⎥⎥⎦
d2u

dr2

+ 1

r

⎡
⎢⎢⎢⎣
1+�1

(
du

dr

)2

1+�2

(
du

dr

)2

⎤
⎥⎥⎥⎦ du

dr
− M2

1+m2
u− dp

dz

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

dr =0 (6)

in which � is the domain of the problem, � is arbitrary test functions that can be considered as
the variation of u. We have chosen linear basis function for the solution of this equation, which is
a two node line element. The finite element solution over this element is chosen of the following
type:

u=
2∑

i=1
ui�i (7)

The Galerkin weighted residual method is applied for the solution of original equation. In
Galerkin approach, the weight function for an element is chosen as

�=�i (i=1 . . .2) (8)

where �i are the basis functions for a typical element (ri ,ri+1) and are defined by
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Since Equation (6) is nonlinear in u, therefore a set of nonlinear algebraic equations is obtained
when Equations (7) and (8) are invoked in Equation (6). In matrix form such set is written as
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where n is the total number of unknown solution values and fi (u) are obtained by putting in the
value of u from Equation (7) for each element in Equation (6).

The domain of the problem is divided into a set of 200 elements of equal length. As we know
the velocity values at the boundary of the domain, therefore after incorporating these boundary
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conditions we obtain a set of 199 simultaneous non linear algebraic equations having 199 unknowns.
For the solution of this set of equations, we used Newton’s iterative method with an initial guess
provided to it as

u(r)=r (11)

Newton’s iterative method is generally implemented in two steps procedure. First vector z is
found which will satisfy

J (u(k))z=−F(u(k)) (12)

In the above equation, J (u(k)) is the Jacobian of F(u(k)). The new approximation u(k+1) can be
obtained through

u(k+1) =u(k)+z (13)

Newton’s method is expected to give quadratic convergence, provided that a sufficiently good
starting guess is chosen.

4. ANALYSIS OF RESULTS

4.1. Poiseuille flow

In this subsection, both cylinders are stationary and the flow is induced due to an applied constant
pressure gradient. The dimensionless boundary conditions are [20]

u(r) = 0 at r =1

u(r) = 0 at r =k= R1/R0
(14)

Now Figures 1–4 have been prepared to display the influence of different parameters on the
velocity. Note that in all figures except Figure 2 panel a stands for the Newtonian fluid and panel b
for Oldroyd 6-constant fluid. The influence of constant pressure gradient on the velocity field is
seen in Figure 1. It is noted that the velocity increases for both the Newtonian and Oldroyd 6-
constant fluids when magnitude of constant pressure gradient is increased. It is also observed that

(a) (b)

Figure 1. Influence of pressure gradient on u for Poiseuille flow.
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(a) (b)

Figure 2. Influence of fluid parameters �1 and �2 on u for Poiseuille flow.

(a) (b)

Figure 3. Influence of Hartmann number M on u for Poiseuille flow.

the non-Newtonian effects enhance the velocity. The influence of fluid parameters �1 and �2 on
the velocity profiles is shown in Figure 2. Here the velocity decreases by increasing �1 and fixed
�2. However, the effect of �2 on the velocity is quite opposite to that of �1. The velocity decreases
by increasing the Hartman number M for both the Newtonian and Oldroyd 6-constant fluids and is
depicted in Figure 3. The influence of Hall parameter on the velocity profile is shown in Figure 4.
This figure elucidates that the velocity increases when Hall parameter is increased.

4.2. Generalized Couette flow

Here the flow is driven by the motion of inner cylinder and an applied pressure gradient. The
boundary conditions in dimensionless form are [20]

u(r) = 1 at r =1

u(r) = 0 at r =k
(15)

The variation of Hall parameter on the velocity field is given in Figure 5. It is observed that the
velocity increases by increasing the Hall parameter. The increase in the magnitude of velocity is
more in an Oldroyd 6-constant fluid when compared with the Newtonian fluid.
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(a) (b)

Figure 4. Influence of Hall parameter m on u for Poiseuille flow.

(a) (b)

Figure 5. Influence of Hall parameter m on u for generalized Couette flow.

5. CONCLUSIONS

The main objective of this present study is to correct the main flow equation (4). Unlike the
flow analysis of Reference [20] Equation (4) does not correspond to the hydrodynamic case when
m→∞. Numerical simulation here is also achieved through finite element method. Reliability of
the presented analysis is verified through the deduced observations. An extension to other features
of the considered problems presents also the possibility of future work. Our major efforts in the
future will be dedicated to the applications of the employed approach to different area.
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